We use cookies to provide some features and experiences in QOSHE

More information  .  Close
Aa Aa Aa
- A +

The deep Anthropocene

31 0 0

Humanity’s transition from hunting and gathering to agriculture is one of the most important developments in human and Earth history. Human societies, plant and animal populations, the makeup of the atmosphere, even the Earth’s surface – all were irreversibly transformed.

When asked about this transition, some people might be able to name the Neolithic Revolution or point to the Fertile Crescent on a map. This widespread understanding is the product of years of toil by archaeologists, who diligently unearthed the sickles, grinding stones and storage vessels that spoke to the birth of new technologies for growing crops and domesticating animals. The story they constructed went something like this: beginning in the Near East some 11,000 years ago, humans discovered how to control the reproduction of wheat and barley, which precipitated a rapid switch to farming. Within 500 to 1,000 years, a scattering of small farming villages sprang up, each with several hundred inhabitants eating bread, chickpeas and lentils, soon also herding sheep and goats in the hills, some keeping cattle.

This sedentary lifestyle spread, as farmers migrated from the Fertile Crescent through Turkey and, from there, over the Bosporus and across the Mediterranean into Europe. They moved east from Iran into South Asia and the Indian subcontinent, and south from the Levant into eastern Africa. As farmers and herders populated new areas, they cleared forests to make fields and brought their animals with them, forever changing local environments. Over time, agricultural advances allowed ever larger and denser settlements to flourish, eventually giving rise to cities and civilisations, such as those in Mesopotamia, Egypt, the Indus and later others throughout the Mediterranean and elsewhere.

For many decades, the study of early agriculture centred on only a few other regions apart from the Fertile Crescent. In China, millets, rice and pigs gave rise to the first Chinese cities and dynasties. In southern Mexico, it was maize, squash and beans that were first cultivated and supported later civilisations such as the Olmecs or the Puebloans of the American Southwest. In Peru, native potato, quinoa and llamas were among species domesticated by 5,000 years ago that made later civilisations in the Andes possible. In each of these regions, the transition to agriculture set off trends of rising human populations and growing settlements that required increasing amounts of wood, clay and other raw materials from the surrounding environments.

Yet for all its sweep and influence, this picture of the spread of agriculture is incomplete. New technologies have changed how archaeology is practised, from the way we examine ancient food scraps at a molecular level, to the use of satellite photography to trace patterns of irrigation across entire landscapes. Recent discoveries are expanding our awareness of just how early, extensive and transformative humans’ use of land has been. The rise of agriculture was not a ‘point in time’ revolution that occurred only in a few regions, but rather a pervasive, socioecological shifting back and forth across fuzzy thresholds in many locations.

Bringing together the collective knowledge of more than 250 archaeologists, the ArchaeoGLOBE project in which we participated is the first global, crowdsourced database of archaeological expertise on land use over the past 10,000 years. It tells a completely different story of Earth’s transformation than is commonly acknowledged in the natural sciences. ArchaeoGLOBE reveals that human societies transformed most of Earth’s biosphere much earlier and more profoundly than we thought – an insight that has serious implications for how we understand humanity’s relationship to nature and the planet as a whole.

Just as recent archaeological research has challenged old definitions of agriculture and blurred the lines between farmers and hunter-gatherers, it’s also leading us to rethink what nature means and where it is. The deep roots of how humanity transformed the globe pose a challenge to the emerging Anthropocene paradigm, in which human-caused environmental change is typically seen as a 20th-century or industrial-era phenomenon. Instead, it’s clearer than ever before that most places we think of as ‘pristine’ or ‘untouched’ have long relied on human societies to fill crucial ecological roles. As a consequence, trying to disentangle ‘natural’ ecosystems from those that people have managed for millennia is becoming less and less realistic, let alone desirable.

Our understanding of early agriculture derives mostly from the material remains of food – seeds, other plant remains and animal bones. Archaeologists traditionally document these finds from excavated sites and use them to track dates and distribution of different people and practices. Over the past several decades, though, practitioners have become more skilled at spotting the earliest signatures of domestication, relying on cutting-edge advances in chemistry, biology, imaging and computer science.

Archaeologists have greatly improved their capacity to trace the evolution of crops, thanks to advances in our capacity to recover minute plant remains – from silica microfossils to minute attachment scars of cereals, where the seeds attach to the rest of the plant. Along with early crops, agricultural weeds and storage pests such as mice and weevils also appeared. Increasingly, we can identify a broader biotic community that emerged around the first villages and spread with agriculture. For example, weeds that originated in the Fertile Crescent alongside early wheat and barley crops also show up in the earliest agricultural communities in places such as Germany and Pakistan.

Collections of animal bones provide evidence of how herded creatures changed physically through the process of domestication. Butchering marks on bones can help reconstruct culling strategies. From the ages and sizes of animals, archaeologists can deduce the populations of herds in terms of age and sex ratios, all of which reveals how herding differed from hunting. Herding systems themselves also vary, with some focused only on producing meat, and others on milk and wool too.

The British Isles were transformed by imported crops, weeds and livestock from millennia earlier

Measurements of bones and seeds have made great strides with technologies such as........

© Aeon

Get it on Google Play